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Abstract. We present a study of the electrical transport properties of thin i-Al-Cu-Fe films. We observe
clear signatures of a dimensional crossover in the temperature and magnetic field dependence of the con-
ductivity for films thinner that '103 Å. In particular for the thinnest sample the magnetoconductivity
is strongly anisotropic, as is expected for the weak localisation contribution in two dimensions. These
experiments show direct qualitative manifestations of the disorder induced quantum interference effects
occurring in quasicrystals. Estimates of the electronic microscopic parameters are in accordance with those
obtained in bulk samples. Their values and significance are discussed.

PACS. 71.23.Ft Quasicrystals – 73.20.Fz Weak or Anderson localisation

1 Introduction

Stable quasicrystals (QCs) display surprising electrical
transport properties [1]. Icosahedral alloys such as i-Al-
Cu-Fe, i-Al-Pd-Mn or i-Al-Pd-Re have very high resistiv-
ities (from 10+4 to 10+6µΩ cm at 4 K). I-Al-Pd-Re even
exhibits a metal to insulator transition. This transition
may be unique as it occurs in a highly ordered alloy of
metals without a gap in the density of states at EF (ac-
cording to low temperature specific heat data). Several
theoretical approaches have been developed to explain the
peculiar transport properties observed (see Roche et al.
and Mayou [1,2]). They rely on the specific atomic order
of the QCs. However at low temperature, the T and mag-
netic field dependence δσ(T,B) was found to be similar to
the one of disordered systems. In particular, δσ(T,B) of
i-Al-Cu-Fe, i-Al-Pd-Mn and metallic i-Al-Pd-Re samples
was successfully fitted using quantum interference effects
(QIE) theories [3–9].

The QIE theories predict T and B dependent correc-
tions to the electrical conductivity of metals, due to inter-
ference effects of electrons elastically scattered by the dis-
order. These theories were elaborated in the weak disorder
limit and are expected to well describe small corrections
to the conductivity of metals [10]. However in the case
of the QCs, the electron states markedly differ from free
electron states, σ is quite small and the relative variations
δσ(T,B)/σ are rather large. Thus in i-Al70.5Pd22Mn7.5

one has δσ(B)/σ = [σ(B)−σ(0)]/σ(0) ∼ 25% at low T [6].
In the case of i-Al-Cu-Fe, it was claimed that the whole T
dependence of σ from low T up to 200 K is mainly due to
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QIE, implying a quantum correction at low T amounting
at least 30–35% of σ(200 K) [9]. Thus it seems surprising
that the QIE theories work so well in these alloys. Note
however that due to the number of degrees of freedom
available, performing complete QIE fits is a difficult task.
Authors often get large error bars for the microscopic pa-
rameters extracted or consider different approaches which
do not all give exactly the same results [9,11].

In this context it is interesting to further test the rele-
vance of QIE in quasicrystals by looking for qualitative
signatures of their occurrence. The study of thin films
makes such a test possible. The QIE theory predicts differ-
ent δσ(T,B) dependences for 3D and 2D samples. In bulk
samples δσ(T ) follows a T 1/2 law at low enough T for the
inelastic scattering time (and thus the weak localisation
part) to be saturated (T < 1−2 K), and δσ(B) behaves
like B1/2 at intermediate fields. In thin films, one instead
expects δσ(T ) ∝ Ln(T ) and δσ(B) ∝ Ln(B). Moreover
a characteristic anisotropy of δσ(B) should be observed,
which does not exist in 3D samples.

An indication of a two dimensional regime in i-Al-Cu-
Fe thin films was given in [12] based on the T dependence
at low T of ion beam thinned samples. The aim of the
present work is to study the conductivity of thin QC Al-
Cu-Fe films and seek for a clear signature of the dimen-
sional crossover as a function of the samples thickness in
the T and B dependences of the conductivity. In Section 2
we recall the basic QIE contributions to σ and the crite-
ria for the crossover, and in Section 3 we briefly describe
the samples preparation and characterisation. We then
present the experimental measurements (Sect. 4). Their
quantitative analysis and discussion are given in Section 5.
A preliminary account of this work was given in [13].
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Fig. 1. Characteristic length governing the dimensional
crossover of the quantum interference effects: Li and LT as
a function of T , LB as a function of B in tesla. We use
D = 0.3 cm2 s−1, Li(T ) is estimated using the inferior and
superior values of the scattering time given in [5].

2 Quantum interference effects and criteria
for the dimensional crossover

As is well known the weak localisation contribution to
δσ(T,B) comes from the interference of time reversed
closed loop path followed by the electrons. The inelas-
tic scattering and an imposed magnetic field limit the
size of the loops which effectively contribute to δσ(T,B).
A thin film is two dimensional for weak localisation if
most of the coherent electron loop path are confined in
the sample’s plane. The following conditions must then
be fulfilled: Li(T ) � t and LB = (h/4πeB)1/2 � t (t
is the film thickness, Li(T ) the inelastic mean free path
and LB the magnetic dephasing length). A second type of
contribution arises from combined disorder scattering and
electron-electron coulomb interaction (EEI contribution),
the physical meaning of which has been discussed [14]. The
coherence of the two electrons considered in this mecha-
nism is limited by their energy difference of order kBT , and
the magnetic field mostly acts via the Zeeman splitting,
orbital effects on δσ(B) being smaller. Then the criterion
for a 2D EEI contribution is LT = (3hD/2πkBT )1/2 � t
(D: electron diffusivity). Taking the values of D and τi(T )
deduced from the analysis of bulk i-Al-Cu-Fe samples, we
can estimate below which range of temperature, magnetic
field and film thickness the two dimensional effects should
be observable. In Figure 1 we show the values of Li(T ),
LB and LT estimated from the data of [6]. We conclude
that below T ∼ 1 K and B ∼ 1 T, films a few hundred
angstroms thick should be in the crossover region.

3 Sample preparation and characterisation

We made thin film samples of nominal composition
Al62.5Cu25Fe12.5 with thicknesses ranging from 9000 Å

down to 125 Å. The samples were prepared by sequen-
tial evaporation of the chemical elements on sapphire sub-
strates, followed by thermal treatments causing the in-
terdiffusion and the growth of the quasicrystalline phase.
The succession of phase transformations leading to pure
quasicrystalline films was studied in detail [15,16]. We
briefly describe the samples’ characterisation which was
presented in [13]. The flatness of the films is important
for the present study. It was ensured by encapsulating
the multilayers with alumina layers (500 Å or 1000 Å
thick), which prevents the appearance of roughness during
the annealings as checked by cross-sectional transmission
electron microscopy. The quasicrystalline nature of the
films and their phase purity was checked by grazing angle
X-ray diffraction (XRD). However for the thinnest sam-
ples the diffraction signal is small and minority secondary
phases could be present without being seen. The electri-
cal conductivity of the films is then used as a comple-
mentary characterisation. It is indeed known that metal-
lic secondary phases significantly increase the samples
conductivities.

The σ(T ) of the samples studied here are shown in [13].
One has the same T dependence as that of bulk speci-
men, which is characteristic of quasicrystals and approxi-
mant phases. The absolute values of σ range from 300 to
500 (Ω cm)−1 (at 4 K). They are thus higher than those of
good quality bulk specimen (for which σ(4 K) ranges from
100 to 250 (Ω cm)−1 [17]). This difference can in principle
be due to a non-perfect crystallographic structure or to a
non-optimum chemical composition of the QC phase [17],
or to the presence of a conducting secondary phase. The
diffraction peaks of thin films are indeed always broader
than those of “perfect” bulk specimen. Moreover small
composition differences can exist between the samples, as
it becomes more difficult to control it in the thinnest films.
However, no correlation is observed between the samples’
thickness and their conductivity. Thus there seems to be
no tendency for the thinner films to be of worse quality
than the thicker ones which have clearly pure QC XRD
spectra. The films in which the presence of secondary
phases was observed by XRD all had higher conductiv-
ities than the samples studied here. We are thus confident
that the properties of the films we study are characteristic
of the QC phase.

The conductivity measurements at low temperature
and in magnetic field were performed in a He3 cryo-
stat down to 0.45 K in the 1 tesla magnetic induction
range, using the Van der Pauw contact geometry. For the
anisotropy measurements, the samples were mounted on
a orientable holder and could be rotated from parallel to
perpendicular to the magnetic field inside the cryostat.

4 Experimental results

4.1 Temperature dependence of the conductivity
at low T

The temperature dependence of σ was studied at low T as
a function of the films thickness. In Figure 2 we show in a
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Fig. 2. Low temperature conductivity variations δσ(T ) for
samples of thickness 3000 Å, 1000 Å and 125 Å. The curves
are magnified and shifted for clarity.

semi-log scale the σ(T ) curves measured below T = 10 K
for samples of thicknesses 3000 Å, 1000 Å and 125 Å. It
is readily seen that whereas σ(T ) remains curved at the
lowest T for the thickest sample, a Ln(T ) dependence is
observed for the 1000 Å and 125 Å samples, as expected
for the 2D case.

4.2 Magnetoconductivity

We measured the magnetoconductivity of the films at low
temperature. For the thicker samples the δσ(B)/σ curves
are very similar to the ones of the bulk i-Al-Cu-Fe sam-
ples [6]. However as the thickness decreases, the curvature
of the magnetoconductivity curves changes. This is illus-
trated in Figure 3 where we compare the δσ(B)/σ versus
B1/2 curves of the same samples of Figure 2 (B is parallel
to the film plane).

At low field, a B2 dependence is expected indepen-
dently of the sample’s dimensionality, whereas at higher
fields (tesla range) δσ(B) ∼ Ln(B) and δσ(B) ∼ (B)1/2

in 2D and 3D respectively. The change of curvature of
δσ(B) in the 125 Å corresponds nicely to the expected
B2 → Ln(B) transition of a 2D film, whereas the thicker
films all display a 3D behaviour (B2 → (B)1/2). Thus the
magnetoconductivity curves also show the dimensionality
crossover in our series of samples. Unfortunately we can-
not reliably fit the curves in the whole field range since, as
shown in Figure 1, a 2D to 3D crossover is also expected
in the 125 Å film when B is increased above a few tesla.

The best demonstration of the two dimensional regime
is the appearance of an anisotropy in δσ(B). In Figure 4
we show the δσ(B)/σ curves at low T for the 125 Å sample
for fields parallel and perpendicular to the film plane.

Fig. 3. Magnetoconductivity of 3000 Å, 1000 Å and 125 Å
thick samples measured at T = 0.5 K. The straight lines are
guides to show the change of curvature with the thickness.

One observes a significant anisotropy (at T = 0.45 K,
δσ(B⊥)/δσ(B//) ∼ 2 for B ≤ 0.2 tesla) which diminishes
as the field and the temperature are increased, as expected
from weak localisation. Although signs of the dimensional
cross-over were also observed in thicker samples as shown
above, no significant anisotropy was observed in them.
This point will be discussed below.

5 Quantitative analysis

In this section we fit the curves shown above with the
expressions of 2D quantum interference effects. We will
then compare the values of the microscopic parameters
involved in the analysis with those obtained from 3D fits
of bulk specimen measurements.

5.1 Fits of the curves

In the low field range considered here and at low tempera-
ture, the EEI contributions (spin and orbital effects) to the
magnetoconductivity can be neglected and the curves were
fitted using the weak localisation expressions only given
in [18] in the strong spin-orbit limit (1/τi(T ) � 1/τso).
These expressions are valid in the diffusive regime (elas-
tic mean free path le smaller than the film thickness)
in the two-dimensional limit (min[Li(T ), LB] � t) but
taking a finite film thickness into account for δσ(B//).
The diffusive limit is justified in our 125 Å thick film
since estimates of the mean free path in quasicrystals give
l ∼ 15−30 Å [19]. We do not take the spin-flip rate 1/τs ex-
plicitly into account. Actually only a very small fraction of
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Fig. 4. (a) and (b) Magnetoconductivity in parallel and per-
pendicular fields at T = 0.45 K and T = 1.3 K for the 125 Å
thick sample. The logarithmic scale is used to enhance the low
field range. Dots are the experimental points and lines are the
theoretical fits (see text).

the Fe atoms is magnetic in i-Al-Cu-Fe (10−5−10−4 of the
Fe atoms [20]). However at low temperature (T < 1 K)1/τs
is not negligible compared to 1/τi(T ) (inelastic scattering
rate). It is then implicitly included into the fitted scatter-
ing time. The fits are insensitive to the elastic scattering
time, and the films thickness is known so that we have
three free parameters: D, τso and τi(T ).

The calculations show that τi(T ) mostly influences the
amplitude of δσ(B) (beside the anisotropy), D influences
the difference δσ(B⊥)− δσ(B‖) for a given τi(T ), and τso
changes the shape of the δσ(B) curves. Thus as a first
approximation we can estimate the three parameters in-
dependently. The four curves (δσ(B‖,⊥)/σ at T = 0.45 K
and T = 1.3 K) are of course fitted with the same values

of D and τso, τi taking two values. The main uncertainties
come from the one on τso. In Figure 4 we show the fits to
δσ(B)/σ for both field orientation at 0.45 K and 1.3 K,
and see that quite good fits can be obtained. From these
fits we estimate D = 0.1± 0.02 cm2 s−1, τso = 2.5± 1 ps,
τi(0.45 K) = 410 ± 125 ps and τi(1.3 K) = 110 ± 30 ps.
The calculated curve (T = 0.45 K) start to deviate from
the experimental points at B ≈ 1 tesla. This is probably
due to the neglect of EEI effects which start to contribute
above one tesla, and to the proximity of the 2D to 3D
transition induced by the field.

In principle one can also extract the screening param-
eter Fσ which governs the EEI contribution from δσ(T ).
Combining both weak localisation and EEI effects the the-
ory gives in 2D (in the limit 1/τso � 1/τi(T )) [10]:

σ(T2)− σ(T1) = (e2/πht) [0.5 Ln(τi(T2)/τi(T1))
+ (1− 0.75 Fσ) Ln(T2/T1)] .

With only two values of τi(T ) we can only roughly esti-
mate Fσ. Assuming 1/τi(T ) ∝ T p, we get p ≈ 1.23 and
Fσ < 0.30.

5.2 Discussion

Once we have values of the parameters we can check
the consistency of our approximations. The calculated
EEI contribution to δσ(B)/σ is negligible, except when
T = 0.45 K and B > 1 tesla where it amounts a few per-
cent of the weak localisation part [21]. This can explain
the deviation of the fit from the experimental points in
that range. We also check that LB > (tLi(T ))1/2 so that
a deviation from the 2D limit of δσ(B//)/σ such as the one
observed in [22] is not expected in our case. The high spin-
orbit scattering limit (τso � τi) is also valid. Note that no
significant anisotropy was observed with the 250 Å thick
film. Indeed calculations show that, even remaining in the
2D limit, the anisotropy vanishes when “t” is increased
since |δσ(B‖)/σ| increases with “t”. Moreover this film is
more resistive that the 125 Å one and this also diminishes
the anisotropy (effect of a smaller D).

We now compare our values of the fitting parameters
to the ones obtained in bulk samples. A direct comparison
is possible since the parameters D, τso and Fσ should take
their 3D value in our films (le and the screening length
are smaller than “t”). Dimensionality effects could reveal
in the T dependence of τi(T ) but we do not look for them.
As our magnetoconductivity fits were performed in very
limited T and B ranges (to stay in the 2D limit) we merely
wish to compare the orders of magnitude of the parame-
ters. Both τi(T ) and τso are in the range of values obtained
in bulk i-AlCuFe samples (see for instance [6]). As for D
one generally fixes it to an estimated value in order to
decrease the number of fitting parameters of full QIE fits.
The difficulty in a priori estimating D is that it should
not include the QIE effects. One uses the Einstein rela-
tion for σ and the values of σ(T ∼ 100−300 K) for which
QIE effects are negligible. This gives for bulk samples
D ≈ 0.2−0.3 cm2 s−1 [6]. Applied to our 125 Å sample this



T. Grenet and F. Giroud: Dimensional crossover in quasicrystalline thin films 169

procedure would give D ≈ 0.4−0.6 cm2 s−1. But in our
case D is a free parameter and we find D ≈ 0.1 cm2 s−1

from the fits. In fact it is not obvious that D has the same
value at low T as at T ∼ 100−300 K. Indeed σ increases
continuously from the low T up to 1000 K without any
change of regime or saturation [19] suggesting an equally
increasing D. If so the diffusivity entering the QIE correc-
tions at low T could be smaller than the T ∼ 100−300 K
estimate, which could at least partly explain the disagree-
ment. Finally our estimate of the screening parameter
(Fσ < 0.30) is also smaller than the previously published
ones of bulk samples (Fσ ∼ 0.70−1.5). This is consistent
with the observation that it increases with the resistivity
of the samples [9]. The authors of [9] have focused on its
T dependence. However the significance of the values ex-
tracted from the fits is not clear. Fσ normally measures
the static screening on the length 1/kF and depends on the
electronic structure of the material. QIE fits including the
EEI all use the spin-orbit free theory. The large spin-orbit
scattering limit has been theoretically studied [23,24]. In
that case the term of δσ(T ) proportional to Fσ vanishes,
the magnetoconductance also decreases and becomes T
independent. Unfortunately quasicrystals are in the in-
termediate regime. Indeed the broadening of the Zeeman
levels is comparable to their splitting (h/τso ∼ gµBB for
B ∼ 1 T) and at low T (a few kelvin) one has h/τso ∼ kBT .
Thus in the fits Fσ is a phenomenological parameter which
somehow takes into account the EEI contribution, but the
meaning of its values is not clear as the theoretical expres-
sion for an arbitrary τso is not known.

The elastic scattering time τe is a very interesting pa-
rameter since it gives an insight into the transport mecha-
nism in QCs. The perpendicular magnetoconductivity ex-
plicitly depends on τe, unfortunately due to the small val-
ues ofD andB our fits are practically insensitive to it. One
can estimate that if le ≈ Li for T ≈ 100−300 K then le ≈
20 Å [19]. We also may try to get an estimate using τso,
which characterises the carrier spin rotation upon the scat-
tering on a defect. One expects τe ≈ (Z/137)4τso [25]. The
numerical factor containing Z is the probability of spin-flip
during the elastic collision and Z is the atomic number as-
sociated to the defect. This relation was shown to hold in
order of magnitude in different systems for the scattering
on surfaces and impurities (Ref. [26] and Ref. [25] p. 327).
In our case, assuming that the collisions mainly involve the
transition elements (Fe and Cu) we get τe ≈ 2×10−15±1 s
corresponding to le ≈ 0.8–8 Å. This estimate is smaller
than the ones based on Li(T ) and is also smaller than the
typical size of the atomic clusters constituting the qua-
sicrystals. Note that in their QIE study up to room tem-
perature, Alghren et al. [9] also find a rather short elastic
scattering time. It may suggest than the disorder as seen
by the carriers is relatively important in QCs.

6 Conclusion

In summary, we have been able to make very thin Al-
Cu-Fe QC films for the first time and study the influence
of the thickness on their electrical conductivity. We have

observed clear signatures of a 3D to 2D transition of the
QIE contributions to σ(T,B). Our observations (in par-
ticular the anisotropic magnetoconductivity) give direct
qualitative illustrations of the occurrence of the QIE in
the quasicrystal. It is seen that the QIE formula, although
designed for the case of small corrections to σ, are also ap-
plicable to QCs in the 2D regime, and the values of the
parameters are in accordance with the ones of bulk sam-
ples. Questions remain open about the extent to which
the T dependence of σ can be explained solely by QIE,
and about the importance and nature of the disorder seen
by the carriers in QCs.

P.B. Barna, Z. Radi, A. Kovacs, G. Safran and J. Labar
(RITPMS, Budapest) and A. Quivy (CECM, Vitry) are
warmly thanked for the structural characterisation of the
samples.
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